101 in

On the Use of Diffusion Synthetic Accelerat
Parallel 3D Neutral Particle Transport Calculations

S
Sy
S o %

N N

RN,
zﬁ\ RS

S e
o

. Brown
Chang

N
B.

.

P

R
Sumbana
i

et

Center for
Applied Scientific Computing

UCRL-JC-130877

May 1998



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California
nor any of their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific comumercial praduct, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily con-
stitute or imply its endorsement, recommendation, or favoring by the United States
Government or the Unjversity of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or the
University of California, and shall not be used for advertising or product endorsement
purposes.

PREPRINT

This is a preprint of a paper that was submitted to SupexComputing 98, Orlando, FL,
November 7-13, 1998. This preprint is made available with the understanding that it will not
be cited or reproduced without the permission of the authors.
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The linear Boltzmann transport equation (BTE) is an integro-differential equation arising in
deterministic models of neutral and charged particle transport. In slab (one-dimensional Cartesian)
geometry and certain higher-dimensional cases, Diffusion Synthetic Acceleration (DSA) is known to
be an effective algorithm for the iterative solution of the discretized BTE. Fourier and asymptotic
analyses have been applied to various idealizations (e.g., problems on infinite domains with constant
coefficients) to obtain sharp bounds on the convergence rate of DSA in such cases.

While DSA has been shown to be a highly effective acceleration (or preconditioning) tech-
nique in one-dimensional problems, it has been observed to be less effective in higher dimensions.
This is due in part to the expense of solving the related diffusion linear system. We investigate
here the effectiveness of a parallel semicoarsening multigrid (SMG) solution approach to DSA pre-
conditioning in several three dimensional problems. In particular, we consider the algorithmic and
implementation scalability of a parallel SMG-DSA preconditioner on several types of test problems.

The Boltzmann Equation. We begin with the linear time-dependent BTE in a three di-
mensional box geometry with general scattering [8]. The spatial domain is the box D = {r =
(2,9, 2)|ay < 2 < bpyay <y < by, and @; < 2 < b}, the direction variable is © € S, the unit
sphere in R?, the energy variable is I € (0, 00), the time variable is ¢, and the equation in the flux
P(r,Q, E,t)is given by

1 4 .
?](E)atw(r QE )+ Q- -Vo(r,Q, E,t)+ o(r, EYp(rQ, E, 1)

(1) = / / D, Y B oy(r, Q- QO E - EYQdE + ¢(r,Q, E,t),
Joo J82

where Vi = (0 /0x, 0% /dy, 0% /dz) and v(E) is the particle speed. The energy variable £ is
discretized mto energy subgroups, giving rise to a linear system that is blocked by energy group.
When using implicit time integration methods, a linear system of this form must be solved at each
timestep, usually via a block Jacobi solution me‘thod To invert the block diagonal of this matrix
a sequence of mono-energetic, steady-state problems of the general form

(2) Q- Vo(r, Q)+ o(r)h = /S (D)o, 9+ Q)R + (7, ),

must be solved for each energy group at each timestep. Thus, in what follows we concentlate on
the solution of (2).
When solving (2), the flux ¢(r,§) is expanded in surface harmonics according to

7, Q).... Z Z q)m }*m(Q)’

n=0m=—n
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where Y, "(£2) is a surface harmonic and
)= [ ey de
S

is the (n, m)*" moment of v). The source ¢ is similarly expanded.
Given 9 in the above form, one is able to rewrite the scattering integral in the form

(3) /S Cau(r, - Q)i(r, @) = ias,n(r) Z SV ),
B n=0

mz==-—mn

where the o, are given by

r1
Tsn(r) = 27 /_1 os(r, o) Fr(po)dpo,

and where g is the cosine of the scattering angle. The total cross section o is given by

1
o(r) = o.(r)+ 27 / . os(r, po)dpo = 04(r) + 050(r),

where o, i1s the absorption cross section.

Boundary conditions must also be specified so as to make (2) well-posed. Various options
include a reflecting condition on a face, or a Dirichlet condition in which the incident flux is
specified on a face. For simplicity, we will consider only the latter case. Namely, we will consider
boundary conditions of the form

(4) P(r, Q) = g(r,Q) for all r € D and Q € §? with 7#(r) -2 < 0,
where 7(7} is the outward pointing unit normal at r € 0D.

Discretization of the 3-D Problem. In previous work [1], we derived a matrix version of
the well-known diamond difference discretization scheme for the 1-D slab problem analogous to
(2)-(4). This formalism was crucial to the development and analysis of the 1-D DSA preconditioner
discussed therein. We extended that development to 3-D problems in [2], and give a brief overivew
here.

The specific quadrature rules we consider for approximating integrals on $? employ the standard
symmetry assumptions. Following Carlson and Lathrop [4], we consider quadrature rules of the
form

(5) /5 p(R)d0 ; web(Q),

where Qy = (pr,n0,&p), for all £ = 1,..., L, with L = v(v + 2) and v is the number of direction
cosines (v = 2,4,6,...). See [2] for more details.
We use a Petrov-Galerkin finite-element method for the selution of the problem

(6) Q- V+op=finD,
() = g(r) for all r € ID with ii(r) - @ <0,

where Q = (u,n,€) € §? is fixed and equal to one of the above quadrature points (although we
suppress the £ subscript to simplify notation), D is the spatial domain defined earlier, and 7i(r) is
the outward pointing anit normal at r € 9D. The functions f, ¢ and o arve assumed known.
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We first discretize D into zones in the natural way, and define

Azi=a;— v fori=1,.... M, Ay; =y, —yj—q forj=1,...,J, and
Azp =z — 25y for k=1,..., K,

and define ryp = (@1, 45, 21). Also define Ar;j = Az;Ay; Az, The {r;;} are referred to as nodes,
and function values at these points are called nodal values. Assume that ¢ and f have constant
values on each zone

Zigp = {r|lricy <2 < CiyYj-1 < Y < Yj,2p-1 < 2 < 21},

denoted by o, and fi;1, respectively. Function values that are constant on zones will be referred
to as zone-centered values. We use ;1 to denote the approximation to ¥(rijk), the true solution
at ryi. Following the development given in [2], there are (M + 1)(J + 1)(K + 1) unknowns ;.
There are M JK zonal equations, and MK +JM +JK +M +J + K +1 boundary equations, and
we note that (M + 1)(J+ 1)K + 1) = MJK + MK +JM +JK + M+ J + K + 1.

Writing the discretized system in matrix notation, we first have the discrete flux vector ¥ &
RM “)(J“)(K“), defined for all nodes ordered in the natural way. Next, define diagonal matrices
Aw = diag(Awxq, ..., Azpr), with Ay and Az similarly, and define the matrices Dy € RM*x(M+1)
and Sy € RJ‘VIX(J\/[—}«I) by

-1 1 1 1
(7) Dy = and Sy = - Lot
-1 1 1 1

N}

In a similar way, define the matrices Dy, 57, Dy, and Sg. Let 3 = diag(o11, ..., op05) € RMIK,
and define the matrices C, Cy, C,, and S by

Yo =Sk @Sy @A Dy, Cy =Sk @ AyT' D, & Su,
C,= Ag-lDK' & S_] & S]\,[, and § = Sk ® 55 ® Sar-

The matrices 'y, Cy, and C, represent the discretized versions of the differentiation operators d/0z,
d/dy, 0/0z, respectively, and S represents an averaging matrix taking nodal vectors into zone-
centered vectors. With these definitions, it is possible to write the MJK zone-centered equations
in the unknown ¥ as

(8) (C+Z5Y = F,

where C' = uCy + nCy + £C,, and F = (fij;) € RMIE,

To isolate the boundary values, first note that for a direction vector Q with all its components
positive, ¢ satisfies a Dirichlet condition for all r = rg;i, riox, or Tij0, 1.€., for an r on any one of the
three faces ¢ = zq, y = yo, or = = z. For any such ©, letting G be a vector of the same dimension
as ¥ whose possibly nonzero entries are values of g(r, Q) at all the boundary points, the discrete
boundary conditions can be written as Fqgo(¥ — ) = 0, where

6’%}( & IJ“, @ Inr
Fogo = 0, Ix)@el, @ Ty )
(0,1) @ (0, 17) @ el
with the vectors epy and epr having the natural interpretations. There are different £ matrices for

the other possible quadrature points. In all, there are eight different i matrices, with ¢ = 0 or
M,j=0o0rJ,and k=0o0r K.
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At this point it is necessary to introduce the dependence of ¥, G, and the matrix C on the
guadrature point 2. For a given Q = €, the vector ¥ is really Wy, G = G, and the matrix C = (),
for the subscript £ corresponding to that Q. Then the matrix representation of the discrete version
of (6) can be written as

. . I . . Cor+ X5
(9) HY, = ( By ) , where H, = ( B ) ,

The Discrete Ordinates Method. Continuing the matrix development of the overall dis-
cretization of the BTE, we begin by defining discretized representations of the operations of taking
moments of the flux. As operators on zone-centered vectors, these are easily seen to be given by

the MJK x LM JK matrices

(10) L = (w7 (@0 | oY (@)1 | -+ | wr Y ()T )
Similarly, we define the LM JK x M .JK matrices
Y ()l
(11) LY, = :
Y ()
where I = Ipryr. We also will find it useful to define the grouped matrices L, and L;t, where
Ly —n
L= | and F = (B L) -
L'rL,'fL

To represent the source term, define the zone-centered vector @ = (gjre) € REMIK where Qijhe =
q{7ijk, Q¢). For the boundary terms, define the block diagonal matrices B and C' by

B = diag(By, ..., Br) and € = diag(Cy,...,CL),
and let

(12) Tn I2n,+1 ® fny

where I'), = diag(gs,w,,lll/alllv ceesy Us,n,]WJK/O—MJK)a n=10,1,

7 = I & Zo, where Zy = ( IMOJK ) € ROMHDH)(K+1)xMIK

i

2y = I, ® Z1, where

4y = 0 c R(M+1)(J+1)(K+1)><(M+1)(J+‘1)(K+1)~MJK
Ty () (K1)~ MK
¥ = [;®Y,and
5 = Ir®S.
The matrix Z injects zone-centered vectors into the nodal vector space, and the matrix S averages
nodal vectors to obtain zone-centered ones. Note that ZTZ = I and Z7Z, = 0. Using the above
matrices, define the matrix H by

(13) H = diag(Hy,..., Hy) = Z(X7'C + 5) + ZyB.
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The matrices Z and Z; are needed since H operates on nodal vectors, while the scattering matrix
operates on zone-centered vectors. (Recall that f was assumed to be zone-centered in the devel-
opment of the Petrov-Galerkin method discussed earlier.) If we assume only N + 1 terms-in the
scattering operator, then the complete discretization of (2)—(4) can be written in the compact form
N
(14) HY =272% LiT,L,S0 + F.
n=z=0

with = Z5-'Q + Z, BG.

AY: e

o e H 1% .

We now transform (14) into an equivalent moment form. r simplicity here, assuime that
N = 1. It is shown in [2] that the matrix H is invertible. So, first multiply (14) by H~', and then
by either LoS or L9 to give
LoSY® = LoSH 'ZLETeLoSY + LoSH ' ZLIT L S® + LySH'F,
LSV = IWSH'ZLEToLoSY + LiSH ' ZLIT 1,59 + [L,SH™F.
Defining ®q = L(3§W1®1 = [4 80, Ry = LoSH™'F, Ry = [{SH'F, and defining the rectangular
matrices K, v = L,SH ']ZL;';, for n,n’ = 0, 1, these equations are

o s s .

g Ry Inpyre — Kool Ky Iy
(15) A - , with Ay =
0y Ry ~ K0l Ispvpgr — KTy

Once ®¢ and @, are obtained by solving (15}, ¥ is recovered by solving the equation
(16) HY = ZILiTo®o + ZL 1@ + Z571Q + 7, BG.

We note that in the above development, we are lead to a linear system to be solved for the
moments g and @4, namely (15). This system has the form

(17) A® = R.

The development was given for N = 1, for which the matrix 4 in (17) is A, and its size is 4M JK .
In the case of isotropic scattering, N = 0, only the 0* moment ®; needs to be computed, and the
matrix 4 in (17)is A = Ag = I — Kool'y, of size MJK. In general, the matrix A in (17) has the
form A = I — KT, for suitable choices of the matrices K and T'.

Source Iteration. The iterative solution of (17) has typically been accomplished via a simple
Richardson iteration. Without preconditioning, Richardson iteration for (17) is

(18) e+ = Kot 4 R

for k=0,1,..., with ®© being some initial guess. (We note that (18) is also referred to as source
iteration in the literature.) The iteration (18) will converge for any initial guess since the spectral
radius p(KT) < 1.

Some form of preconditioning is generally needed for thick problems. If C' represents a precon-
ditioner for A, then the preconditioned 4 problem becomes

(19) AP(P71®) = R,
and the corresponding source iteration is
QU+ = (1 - AP)OW 1+ R,

for k= 0,1,..., with ©%) = P=18(*) and some initjal guess O, Of course, other more powerful
iterative methods such as BICGSTAB can also be used to solve the preconditioned system (19).
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DSA Preconditioning. In [2] the DSA preconditioner for the discrete problem above assum-
ing isotropic scattering is given by

(20) Py = Iyjx + SDESTSArT,, where
. . 1 : ,
Dey = STA"‘Za,oS + 3 (C_ZA"'E;,iCI + C'yTArE;jCy + C;:TA‘I‘E;]iCz)

+ 205EAzS) @ STAYS; @ (eomrelys + enrnrelsag)
+ 2(15}?AZSK ® (eoe]egj + eJchJ) & S}IVIAQ.?SM
+ 2(1(60]{6%}( + ‘31&’1{6;\*}{) $ 5’§ AySr® 5]{413;1:5]\/1,

with @ = (1/47) 3¢ ,c0 wee, Bao = NI = To), Lap = B ~ '), and Ty defined as in (12). (A
related preconditioner for linearly anisotropic scattering is also derived in [2].) In (20), DZ, refers
to the pseudo-inverse of the DSA matrix Ds. The following facts are shown in [2}:

1. Dy, is singular.

2. dim(N (D)) = M + J + K + 1.

3. dimWN(S) =MJ+JK+ MK +M+J+ K+ 1.

4. N(Deo) CN(S), N(Deo) C N(Cy), N(Deo) C N(CY), ete.
While D, is clearly symmetric from its form, it is singular. The 4-th fact above and the form of
Py imply that the D, linear systems to solve are always consistent, i.e., they have solutions.

Parallel Implemention Issues. The parallel solution of the discretized system (17) has
been discussed at length in [5], [6] and [7]. The implementation discussed therein is parallelized
in all phase space variables. To this we have added a parallel implementation of the above DSA
preconditioner Fy. The linear systems involving the D, matrix are not solved exactly. Rather,
we use a parallel multigrid method to approximately solve these systems. Specifically, we use a
parallel implementation of the Shaffer semicoarsening multigrid (SMG) method discussed in [3],
and perform a V(1,0) cycle to approximate the action of DE times a vector. We investigate the
algorithmic scalability and scaled efficiency of the above SMG-DSA preconditioned iteration on
several problems involving highly diffusive regions, sometimes coupled to very thin regions.

REFERENCES

(1] S. F. AsaBy, P. N. Brown, M. R. Dorr, anp A. C. HINDMARSH, A linear algebraic analysis of diffusion
synthetic acceleration for the Boltzmann transport equation, SIAM J. Numer. Anal., 32 (1995), pp. 128-178.

[2} . N. BrowN, A linear algebraic development of diffusion synthetic acceleration for 3-d transport equations,
SIAM J. Numer. Anal., 32 (1995), pp. 179-214.

[3] P. N. Brown, R. FarLcouT, AND J. JONES, Semicoarsening multigrid on distributed memory machines, Tech.
Report UCRL, Lawrence Livermore National Laboratory, 1998.

[4] B. G. CarusoN AND K. D. LATHROP, Transport theory: The method of discrete ordinates,in Computing Methods
in Reactor Physics, H. Greenspan et al., eds., Gordon and Breach, New York, 1968, pp. 166-266.

[5] M. R. Dorr anp E. M. SALO, Performance of a neutron transport code with full phase space decomposition on
the Cray Research T30, Tech. Report UCRL-JC-119752, Lawrence Livermore National Laboratory, January
1995. Proceedings of the International Conference on Mathematics and Computations, Reactor Physics, and
Environmental Analyses, April 30 — May 4, 1995 in Portland, OR.

[6] M. R. Dorr AND C. H. STILL, A concurrent, multigroup, discrete ordinates model of neutron transport, in Proc.
1993 Scalable Parallel Libraries Conference, A. Skjellum and D. Resse, eds., IEEE Computer Society Press,
1994, pp. 26-35. Held at Mississippi State University, October 68, 1993. Also available as LLNL technical
report UCRL-JC-115601.

, Concurrent source iteration in the solution of three-dimensional, multigroup, discrete ordinates neutron
transport equalions, Tech. Report UCRL-JC-116694, Lawrence Livermore National Laboratory, July 1994.
Submitted to Nuclear Science and Engineering.

[8] G. C. PoMraANING, The Equations of Radiation Hydrodynamics, Pergamon Press, Oxford, 1973.




